
Combining Constraint Programming and Local Search
for Job-Shop Scheduling

J. Christopher Beck, T. K. Feng
Department of Mechanical and Industrial Engineering

University of Toronto, Toronto, Ontario, Canada
{jcb,tkfeng}@mie.utoronto.ca

Jean-Paul Watson
Discrete Math and Complex Systems Department

Sandia National Laboratories, Albuquerque, New Mexico, USA
jwatson@sandia.gov

Since their introduction, local search algorithms have consistently represented the state-of-

the-art in solution techniques for the classical job-shop scheduling problem. This is despite

the availability of powerful search and inference techniques for scheduling problems developed

by the constraint programming community. In this paper, we introduce a simple hybrid

algorithm for job-shop scheduling that leverages both the fast, broad search capabilities of

modern tabu search algorithms and the scheduling-specific inference capabilities of constraint

programming. The hybrid algorithm significantly improves the performance of a state-of-

the-art tabu search algorithm for the job-shop problem, and represents the first instance

in which a constraint programming algorithm obtains performance competitive with the

best local search algorithms. Further, the variability in solution quality obtained by the

hybrid is significantly lower than that of pure local search algorithms. Beyond performance

demonstration, we perform a series of experiments that provide insights into the roles of the

two component algorithms in the overall performance of the hybrid.

Key words: Scheduling, Tabu Search, Constraint Programming, Hybrid Algorithms.

History: Submitted June TBD, 2009.

1. Introduction

Local search algorithms for the traditional makespan-minimization formulation of the job-

shop scheduling problem (JSP) have dominated the state-of-the-art for at least the past 15

years. These include Nowicki and Smutnicki’s landmark TSAB tabu search algorithm (Now-

icki and Smutnicki, 1996), Balas and Vazacopoulos’ guided local search algorithm (Balas

and Vazacopoulos, 1998), Nowicki and Smutnicki’s follow-on i-TSAB tabu search algorithm

1

(Nowicki and Smutnicki, 2005), and most recently Zhang et al.’s hybrid tabu search / sim-

ulated annealing algorithm (Zhang et al., 2008). These algorithms are all built upon a

foundation of one or more powerful, problem-specific move operators, which are able to

efficiently identify promising feasible and high-quality solutions in the neighborhood of a

given solution. Metaheuristic search strategies then leverage these move operators to per-

form global search for minimal-cost solutions; the complexity of these strategies ranges from

simple tabu search (in the case of TSAB) to highly intricate hybridizations of tabu search,

path relinking, and elite pool maintenance schemes (in the case of i-TSAB).

Perhaps somewhat paradoxically, constraint programming (CP) algorithms are more com-

monly used than their local search counterparts to obtain solutions to real-world scheduling

problems, e.g., using ILOG’s Scheduler software library (Scheduler, 2007). This is widely

attributed to a combination of the ability to easily incorporate various idiosyncratic “side”

constraints that are pervasive in real-world scheduling problems (such constraints can require

significant redesign of local search algorithms) and to effectively deduce, via powerful domain-

specific constraint propagators, the implications of various scheduling decisions. However,

despite the volume of research dedicated to the development of scheduling-specific constraint

propagation and search techniques (e.g., see Baptiste et al. (2001); Beck and Fox (2000)), the

performance of CP algorithms on the traditional JSP has significantly lagged that of their

local search counterparts. To date, the strongest CP-based algorithm is solution-guided

search (Beck, 2007), although the performance of even this algorithm lags that of modern

tabu search algorithms for the JSP (Watson et al., 2006) in terms of both time and final

solution quality.

Hybridization of local search and CP on JSPs without side constraints does not, there-

fore, immediately appear to be a promising research direction. However, the following two

unexplored aspects of these algorithms motivate the line of research developed in this paper:

• The strong propagation techniques in CP are most efficient in constrained search states.

That is, the polynomial time inference algorithms are more likely to be able to find im-

plied constraints, and to consequently reduce the search space, in states that are already

highly constrained. When a good solution has been found, strong “back-propagation”

from the upper bound on the makespan results in such a highly constrained search

state. Therefore, we conjecture that while CP is unable to competitively find good

solutions on its own, once given a good solution, it may be able to improve on it more

quickly than a local search approach.

2

• A popular conceptualization of the power of modern local search algorithms is that

they balance intensification with diversification (Watson et al., 2006). Intensification,

which can loosely be understood as searching “near” an existing good solution, is

often implemented by repeatedly restarting search from a good solution that has been

found previously. Diversification, in contrast, tries to distribute the search effort to

unexplored areas of the search space. It is often implemented by maintaining a varied

set of promising solutions and combining them in a variety of ways, such as via path

relinking (Glover et al., 2003). However, modern tabu search algorithms seem to do

a relatively poor job of intensification. Watson (2005) showed that after a relatively

small number of iterations after restarting search from a good solution, tabu search

is a considerable distance from the starting solution. Further, a posteriori analysis of

algorithmic traces indicates that tabu search often fails to locate high-quality solutions

that are quite close to previously identified solutions. In contrast, solution-guided

constructive search performs a much more focused search around its guiding solution

(Beck, 2007). Therefore, we conjecture that improved performance may result from

using CP to strongly intensify search around a diverse set of high-quality solutions

generated by tabu search.

The remainder of this paper is organized as follows. We begin in Section 2 with a brief

discussion of the job-shop scheduling problem, the benchmark instances used in our analysis,

the foundational algorithms for our hybrid approach, and a discussion of previous work on

algorithm switching hybrids. Our simple hybrid is described in Section 3. Section 4 outlines

our computational experiments, which are subsequently detailed in Sections 5 through 8.

We compare the performance of our best parameterization of the hybrid algorithm with the

state-of-the-art in Section 9. Section 10 details some implications of our results, followed

by our conclusions in Section 11. The basic idea of our hybrid algorithm was previously

explored by Watson and Beck (2008). This paper represents a significant extension in terms

of experimental methodology, parameterization, and analysis; in particular, the notion of

switching and the experiments reported in Sections 5 through 8 are all novel contributions.

2. Background, Problems, and Algorithms

In this section, we provide the context for our work: the problem and benchmark instances,

the “pure” algorithms used as a basis for our hybrid approach, and details of previous work

3

on related hybrid algorithms.

2.1 Problem Description and Benchmark Instances

We consider the well-known n×m static, deterministic JSP in which n jobs must be processed

exactly once on each of m machines (Blażewicz et al., 1996). Each job i (1 ≤ i ≤ n) is routed

through each of the m machines in a pre-defined order πi, where πi(j) denotes the jth machine

(1 ≤ j ≤ m) in the routing order of job i. The processing of job i on machine πi(j) is denoted

oij and is called an operation. An operation oij must be processed on machine πi(j) for an

integral duration τij > 0. Once an operation is initiated, processing cannot be pre-empted

and concurrency on individual machines is not allowed, i.e., the machines are unit-capacity

resources. For 2 ≤ j ≤ m, oij cannot begin processing until oi(j−1) has completed processing.

The scheduling objective is to minimize the makespan C
max

, i.e., the maximal completion

time of the last operation of any job. Makespan-minimization for the JSP is NP -hard for

m ≥ 2 and n ≥ 3 (Garey et al., 1976).

An instance of the n × m JSP is uniquely defined by the set of nm operation durations

τij and n job routing orders πi. In nearly all benchmark instances, the τij are uniformly

sampled from the interval [1, 99], while the πi are given by random permutations of the integer

sequence 1, . . . , m. Our experimental results are generated using a subset of Taillard’s well-

known benchmark instances, specifically those labeled ta11 through ta50 (Taillard, 1993).

This subset contains 10 instances of each of the following problem sizes: 20 × 15, 20 × 20,

30 × 15, and 30 × 20. We have selected these instances because they are widely studied,

are known to be very challenging, and have “headroom” for improvement in best-known

makespans. For these same reasons, we ignore the easier instances in Taillard’s problem

suite, in addition to many historical instances (e.g., the “ft”, “la”, and “orb” instances) for

which modern JSP algorithms can consistently locate optimal solutions.

2.2 Iterated Simple Tabu Search

Beginning with an early approach by Taillard (1989), tabu search algorithms have consis-

tently represented the state-of-the-art in obtaining high-quality solutions to the JSP. A vari-

ety of researchers have introduced tabu search algorithms of ever-increasing effectiveness and

complexity. Specific algorithmic advances of note in this progression include the introduction

of (1) the highly restrictive N5 critical path-based move operator (Nowicki and Smutnicki,

1996), (2) search intensification mechanisms in conjunction with sets of “elite” or high-quality

4

solutions (Nowicki and Smutnicki, 1996), and (3) search diversification mechanisms in the

form of path relinking (Nowicki and Smutnicki, 2005). These components are simultane-

ously embodied in Nowicki and Smutnicki’s i-TSAB algorithm, which has represented the

state-of-the-art since 2003. With the exception noted below, the sole competitor is a hybrid

tabu search / simulated annealing algorithm introduced by Zhang et al. (2008). The Zhang

et al. algorithm uses simulated annealing to generate an initial set of elite solutions, which

are then processed via tabu search-driven intensification. The primary differences between

the Zhang et al. algorithm and i-TSAB are the lack of an explicit diversification mechanism

(path relinking is used in i-TSAB) and the use of the N6 move operator introduced by Balas

and Vazacopoulos (1998) in the case of Zhang et al.

Although remarkably effective, i-TSAB is an extremely intricate and complex algorithm.

Such complexity is a significant drawback to researchers, as in practice it impedes repro-

ducibility, adoption, and subsequent study. In the specific case of i-TSAB, its intricacy

makes it difficult to assess the contribution of the various algorithmic components to its

overall performance. Toward this goal, we previously introduced a simplified version of i-

TSAB called iterated simple tabu search (i-STS) (Watson et al., 2006), which contains the

key algorithmic ingredients of i-TSAB while reducing the overall complexity and maintain-

ing near-equivalent performance. Pseudo-code for i-STS is provided in Figure 1. A

summary description of the algorithm follows; full details are provided in Watson

et al. (2006).

A basic tabu search lies at the core of i-STS, built on the N5 move operator. Short-

term memory is used to prevent inversion of recently swapped pairs of adjacent operations

on a critical path. Following Taillard (1989), the tabu tenure is periodically and randomly

sampled from a fixed interval [L, U]. Search in i-STS proceeds in two phases. In the first

phase, the basic tabu search algorithm is executed for a small, fixed number of iterations

from each of a number of distinct random initial solutions. The best solution from each

iteration-limited run is saved, and the aggregate forms the initial set E of elite solutions.

In the second phase of i-STS, the elite solutions in E are iteratively processed by both

intensification and diversification mechanisms, each selected at any given iteration with

respective probabilities pi and pd, where pi + pd = 1. To perform search intensification,

a single elite solution e ∈ E is selected at random and an iteration-limited tabu search

is executed from e. Due to random tie-breaking during move selection, facilitated by the

pervasiveness of plateaus of equally fit neighboring solutions in the JSP (Watson, 2003),

5

Algorithm 1: i-STS: Iterated Simple Tabu Search

i-STS():

1 initialize elite solution set E via tabu search applied to random initial solutions
2 while termination criteria not met do
3 p := draw random sample from the interval [0, 1]
4 if p ≤ pi then
5 e := draw solution at random from E
6 e′ := apply simple tabu search to e
7 if Cmax(e

′) ≤ Cmax(e) then
replace e in E with e′

8 else
9 e1, e2 := draw two solutions at random from E, e1 6= e2

10 e′ := apply path relinking between e1 and e2

11 e′′ := apply simple tabu search to e′

12 if Cmax(e
′′) ≤ Cmax(e1) then

replace e1 in E with e′′

13 return best(E)

different search trajectories are generated. If a solution e′ with a lower makespan than e

is located, e′ replaces e in E. To perform diversification, two elite solutions e1, e2 ∈ E

are selected at random. Path relinking is then performed to generate a solution e′ that

is approximately equi-distant from both e1 and e2. Iteration-limited tabu search is then

executed from e′, as is performed in the intensification process. If a solution e′′ is identified

with a lower makespan than e1, then e′′ replaces e1 in E. The second phase of i-STS continues

until a cumulative number of basic tabu search iterations M have been executed, with the

best solution e ∈ E returned upon completion.

With four exceptions, all parameters of i-STS are set identically to that reported in

Watson et al. (2006). The exceptions are chosen based on the empirical studies of i-STS and

i-TSAB (Watson et al., 2006) and are as follows:

• The probabilities of intensification and diversification are both set to 0.5 (pi = pd =

0.5).

• The number of iterations of tabu search allowed before the intensification either finds

a new better solution or terminates is 7,000.

• Whenever the intensification phase does find an improved solution, this limit is reset

to 20,000 iterations and the current tabu search continues executing.

6

• The elite pool size (|E|) is one of the independent variables in the experiments reported

below.

2.3 Solution-Guided Search

Solution-guided search (SGS) is an algorithm that combines constructive tree search, ran-

domized restart, and heuristic guidance from good solutions found earlier in the search

(Beck, 2007). The basic approach is a CP tree search with a limit on the number of dead-

ends (“fails”) that are encountered before restarting. Each tree search is guided by using an

existing sub-optimal solution as a value ordering heuristic. Once a variable to be assigned

has been chosen (see below), the value chosen is the value of the corresponding variable in the

guiding solution, provided that value is still in the domain of the chosen variable. Otherwise,

any other value ordering heuristic may be used. As in i-STS, a small set of “elite” solutions

is maintained, one of which is chosen with uniform probability to guide a given tree search.

When a tree search exhausts its fail limit, it returns the best solution it has found (if any).

That solution, if it exists, then replaces the guiding solution in the elite pool.

Beck (2007) showed that SGS has strong, but not state-of-the-art, performance on

makespan-minimization JSPs. While finding significantly better solutions than chronologi-

cal backtracking and randomized restart (using the same propagators, heuristics, and, in the

latter case, fail limit sequences), SGS was not able to perform as well as i-STS.

2.3.1 Details

A simplified version of SGS is used in this paper. This version fixes a number of the pa-

rameters in the full algorithm. Readers interested in the full version are referred to Beck

(2007).

Pseudocode for SGS is shown in Algorithm 2. The algorithm initializes a set E of elite

solutions and then enters a while loop. In each iteration, a chronological backtracking search

is guided with a randomly selected elite solution (line 6). If a solution s is found during the

search, it replaces the starting elite solution r. Each individual search is limited by a fail

bound: a maximum number of fails that can be incurred. The entire process ends when the

problem is solved, proved insoluble within one of the tree searches, or when some overall

bound on the computational resources (e.g., CPU time or number of fails) is reached.

More formally, a search tree is created by asserting a series of choice points of the form:

〈Vi = x〉 ∨ 〈Vi 6= x〉, where Vi is a variable and x is the value assigned to Vi. SGS can use

7

Algorithm 2: SGS: Solution-Guided Search

SGS():

1 initialize elite solution set E
2 while not solved and termination criteria not met do
3 r := randomly chosen element of E
4 set upper bound on cost function
5 set fail bound b
6 s := search(r, b)
7 if s is better than r then
8 replace r with s in E

9 return best(E)

any variable ordering heuristic to choose the variable to assign. The choice point is formed

using the value assigned in the guiding solution or, if the value in the guiding solution

is inconsistent, a heuristically chosen value. Let a guiding solution r be a set of variable

assignments {〈V1 = x1〉, 〈V2 = x2〉, . . . , 〈Vm = xm〉}, m ≤ n, where n is the number of

decision variables. Let dom(Vi) be the set of possible values (i.e., the domain) of variable Vi.

The variable ordering heuristic has complete freedom to choose a variable Vi to be assigned.

If xi ∈ dom(Vi), where 〈Vi = xi〉 ∈ r, the choice point is made with x = xi. Otherwise, if

xi /∈ dom(Vi), any value ordering heuristic can be used to choose x ∈ dom(Vi).

At line 4 in the pseudocode, an upper bound is placed on the cost function for the

subsequent search. We use the local upper bound approach here (Beck, 2007): the upper

bound on the cost function is set to one less than cost of the guiding solution (i.e., cost(r)−1).

Intuitively, the local upper bounding approach is a trade-off between exploiting constraint

propagation (strongest if the upper bound were one less than the best solution we had found

so far) and exploiting the heuristic guidance of high-quality but not necessarily best-so-far

solutions.

Given a large enough fail limit (line 5), an individual search can exhaust the search space.

Therefore, completeness depends on the policy for setting the fail limit. In our experiments,

we use the Luby fail limit, an evolving sequence that has been shown to be the optimal

sequence for satisfaction problems under the condition of no knowledge about the solution

distribution (Luby et al., 1993). The sequence is as follows: 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2,

4, 8, Following Wu and van Beek (2007) and our own preliminary experimentation, we

multiply the elements of the sequence by a fixed constant (in our case, 200). As the sequence

increases without limit, a single search will eventually have a fail limit that is sufficient to

8

search the entire search space and therefore the overall algorithm using the Luby fail limit

is complete.

SGS is a general framework for constructive tree search. To apply SGS to the JSP,

solutions are encoded using the well-known disjunctive graph representation. Texture-based

heuristics (Beck and Fox, 2000) are used to identify a machine and time point with maximum

contention among the operations and to then choose a pair of unordered operations. The

heuristic is randomized by specifying that the 〈machine, time point〉 pair is chosen with

uniform probability from the top 10% most critical pairs. The ordering found in the guiding

solution is asserted. Note that because the decisions are binary, the pair in the solution

must be locally consistent, otherwise the pair of operations would already be sequenced in

the opposite order. The standard constraint propagation techniques for scheduling (i.e., edge

finding, the precedence graph, and the timetable constraint) (Nuijten, 1994; Laborie, 2003;

Le Pape, 1994), available via the ILOG Scheduler library (Scheduler, 2007), are also used.

2.4 Algorithm Selection and Switching

The algorithm selection problem, introduced by Rice (1976), is to identify the algorithm (or

the particular parameterization of an algorithm) that has the best performance on a given

problem instance. Algorithm performance on hard combinatorial problems, including the

JSP, is known to be highly variable. Consequently, the ability to identify problem instance

features and correlate these features to algorithm performance in an off-line learning phase

can significantly accelerate solution times when the same features are used to select an

algorithm on-line. Most of the work that has addressed this problem is what Carchrae

and Beck (2005) have termed “high-knowledge”: learning detailed models relating problem

features and algorithm performance, e.g., see Minton (1996); Leyton-Brown et al. (2002);

Boyan and Moore (2000); Lagoudakis and Littman (2000); Horvitz et al. (2001).

In contrast, Carchrae and Beck introduced a “low-knowledge”, switching-base approach

where there is no off-line learning but rather the control switches among the algorithms

during problem solving and algorithms communicate their best-known solutions among each

other. Over the course of the run, reinforcement learning is used to vary the time that the

different algorithms are allocated so that the algorithms that have performed better receive

an increased amount of the run-time. On a series of job-shop scheduling problems, Carchrae

and Beck show that they are able to achieve on-line performance that is equivalent to the

optimal off-line predictive approach.

9

3. Two Very Simple Hybrid Algorithms

Our work adopts the low-knowledge switching approach of Carchrae and Beck (2005). How-

ever, our motivation is not to compare low-knowledge and high-knowledge approaches nor

to directly address the algorithm selection problem. Rather, our motivation is to investigate

whether two strong but very different problem solving strategies can achieve state-of-the-art

performance via very simple hybridizations. Our intuition, as noted above, is that tabu

search and SGS have different behaviors in terms of intensification and diversification and

that this difference may give rise to stronger combined performance.

We initially investigate two particular forms of hybridization:

• One-switch: Given an overall run-time limit of T seconds, the one-switch hybrid runs

i-STS for T/2 seconds and then switches to SGS for the remaining T/2 seconds. As

both algorithms use an elite pool, unlike Carchrae and Beck, the entire elite pool is

transferred between the algorithms. That is, the elite pool at the end of the i-STS

run is used as the initial elite pool for SGS (line 1 of the SGS pseudocode). The best

solution found during the combined run is reported.

• Multi-switch: Using the same overall run-time limit T , a base iteration time b ≤ T

is defined. Within each iteration, i-STS is run followed by SGS with the elite pool

communicated as above. The next iteration then begins, again with i-STS but now

initialized with the elite pool from the immediately preceding SGS run. The value of

b, in addition to the relative proportion of b allocated to each algorithm, can either be

static or can vary over the course of execution. We investigate a number of parameter

settings below.

Obviously, one-switch is identical to multi-switch with b = T . We make the distinction

primarily for clarity of presentation. The i-STS algorithm is run first in each interval because

we observed that it performs better than SGS at quickly improving poor solutions such as

the initial elite pool; this behavior is analyzed further in Section 8.

4. Plan of Experiments and Analysis

In the following sections, we conduct four experiments that examine the performance of

various parameterizations of our hybrid approach and analyze why specific hybrid parame-

terizations work well and others do not. Based on the experimental results, we additionally

10

compare our results to the state-of-the-art as published in the literature. Our experiments

and hypotheses are as follows:

• Experiment 1: We conduct a fully crossed experiment comparing both one-switch and

multi-switch to the underlying pure algorithms. Our hypothesis is that the hybrid

algorithm will exhibit significantly better performance than the pure approaches. We

also expect multi-switch to outperform one-switch.

• Experiment 2: We compare one-switch and multi-switch against variants of the hybrid

algorithm that do not use SGS. Instead, they use chronological backtracking or ran-

domized restart (Gomes et al., 2005). Our hypothesis is that the hybrid using SGS will

outperform the other variations, demonstrating that SGS is critical for the performance

observed in the previous experiments.

• Experiment 3: Following Carchrae and Beck (2005), we use reinforcement learning to

vary the proportion of each time interval that is dedicated to each algorithm based

on the performance of the algorithm during prior intervals. Our hypothesis is that

by allocating more resources to the better performing algorithm, the reinforcement

learning based approach will outperform static allocation over the interval.

• Experiment 4: We perform a controlled experiment to quantify the ability of the pure

algorithms to improve upon an initial elite pool of a given quality. Here, our objective

is to determine why specific parameterizations of our hybrid algorithm tend to work

best.

Our experiments and analyses are based on multiple runs of each algorithm configuration

on each of the Taillard benchmark instances we consider. Each problem instance is run 10

times independently for a given parameter configuration. i-STS is implemented in C++

while SGS uses ILOG Scheduler 6.5 (also in C++). All code was compiled using the GNU

gcc compiler. Experiments were executed on a cluster with 2GHz Dual Core AMD Opteron

270 nodes, each with 2GB RAM running Red Hat Enterprise Linux 4.

5. Experiment 1: The Effects of Hybridization

Our first experiment is a fully crossed experiment that investigates the relative impact of

all parameters and parameter combinations in our hybrid algorithm, with the goal of under-

11

Parameter Value(s) Meaning

T 3600 Total run time for one problem instance, in seconds.
|E| {2, 4, 8} The size of the elite pool for both i-STS and SGS.
a {ists, sgs, hybrid} The pure or hybrid algorithms.
b {120, T} The base iteration time in seconds. The first value

corresponds to multi-switch, the second to one-switch.
g {static, double, luby} The iteration time growth sequence.

Table 1: The parameters for Experiment 1. See text for further details.

standing the relationship between these parameters and overall performance.

5.1 Parameters

Table 1 presents the parameters for the experiment. Parameters a and b interact to form

the different pure and hybrid algorithms. When a = hybrid, i-STS is executed for the first

half of each iteration (i.e., b/2 seconds). On termination, i-STS returns its elite pool. SGS

is then executed for the remainder of each iteration, starting with the elite pool from i-STS.

At the end of each iteration, SGS returns its elite pool. In the next iteration (if any) i-STS

starts from the elite pool returned by SGS in the previous iteration. If b = T , there is only

one iteration. The a = hybrid entries in Figure 1 present a schematic diagram of the hybrid

algorithm when (1) b = T and (2) b = 120.

When a = ists or a = sgs, the corresponding algorithm is executed for the full iteration

time (i.e., for b seconds). At the end of each iteration, the algorithm terminates and returns

its elite pool. The next iteration (if any) will then begin, starting with the elite pool from

the previous iteration. For example, when a = ists, the i-STS algorithm is repeatedly run

for b seconds, restarting at the beginning of each iteration with the elite pool it found in the

previous iteration. Figure 1 presents these variations. In all pure and hybrid schemes, the

initial “elite” pool is constructed by executing i-STS for 15 seconds, achieved by severely

limiting the number of iterations allocated to the individual tabu searches; consequently, the

quality of the resulting solutions is generally poor.

The parameter g controls the growth in the iteration run-times over the course of a single

run. Carchrae and Beck (2005) showed that doubling the iteration length after every iteration

led to significantly better performance. Here, we experiment with three growth sequences:

static, where all iterations are allocated b seconds; double, where each iteration run-time is

double the length of the previous iteration, starting with b seconds for the first iteration;

12

ists

a = hybrid

T

T

sgsists

(1) b = T

a = ists

a = hybrid

T

T

ists

ists sgs

ists

ists sgs sgsists

ists

...

...a = ists

(2) b = 120

Figure 1: Schematic diagrams of the hybrid and pure algorithms for various values of the
iteration run-time b.

and luby, where the iteration pattern follows the Luby sequence multiplied by b. This final

strategy is motivated by the recognition that each iteration can be seen as a “restart” and

therefore the theoretical results of Luby et al. (1993) apply.1 It is worth noting, however, that

our overall run-time limits prevent us from progressing very “deep” into the Luby sequence.

5.2 Results

We performed a two-way (factorial) ANOVA on the results.2 The four independent variables

are the elite pool size |E|, the algorithm a, the base iteration time b, and the iteration

run-time growth sequence g. The sole dependent variable is the relative error of the best

makespans obtained during a run. For a given problem instance and best solution makespan

M , we define the relative error as RE = (M −LB)/LB×100, where LB is the largest known

lower bound for the instance. The mean relative error (MRE) for a given parameterization

is then computed simply as the mean RE taken over 400 data points: the 10 runs on each

of the 40 problem instances. For our analysis, we take LB from Taillard (2008). The runs

1There are two independent uses of the Luby sequence that should not be confused. Within SGS, the
Luby sequence (multiplied by 200) governs the change in the allocated fail limits of each tree search (line 5
in Algorithm 2). At the higher level, an independent Luby sequence (multiplied by b) determines the growth
in the run-time of each iteration.

2All statistical analyses aside from the randomized pair-wise t-tests were performed using the R software
package (R Development Core Team, 2006).

13

b |E| a g MRE MBRE MWRE
3600 8 hybrid static 3.384 3.105 3.709
120 8 hybrid double 3.395 3.108 3.724
120 8 hybrid luby 3.434 3.135 3.772
120 8 hybrid static 3.505 3.178 3.890
120 4 hybrid double 3.519 3.176 3.931
3600 4 hybrid static 3.521 3.163 3.928
120 4 hybrid luby 3.551 3.169 4.009
120 4 hybrid static 3.622 3.197 4.057
3600 2 hybrid static 3.639 3.201 4.224

Table 2: The top nine parameter configurations based on mean relative error (MRE). Also
listed are the corresponding mean best relative error (MBRE) and mean worst relative error
(MWRE). The ranking of the configurations based on these statistics is almost identical to
that using MRE.

for these experiments comprise over 1.5 years of CPU time.

An ANOVA of the results indicated significant effects at p ≤ 0.001 for a, b, and their

interaction. All other main and interaction effects were not statistically significant. We

subsequently used the Tukey Honest Significance Difference (HSD) method with significance

level p ≤ 0.005 to compare the values of each variable. These tests indicated that b = 120

is significantly better than b = T and that the hybrid algorithm achieves significantly lower

MRE than i-STS which in turn achieves significantly lower MRE than SGS.

Table 2 provides summary statistics for the best (not necessarily in a statistically sig-

nificant sense) parameter configurations. We also calculated the mean best relative error

(MBRE) and the mean worst relative error (MWRE). For the former, for each problem

instance we take the lowest RE found over the 10 runs and then, over the 40 problem in-

stances, calculate the mean of those best relative errors. MWRE is analogously calculated.

In Figure 2, the MRE over time is shown for the two pure algorithms, the one-switch hybrid

algorithm, and the multi-switch hybrid algorithm.

5.3 Discussion

Our primary hypothesis was that a simple hybrid composed by switching between a pair

of “pure” algorithms would generate results that are significantly better than the pure al-

gorithms in isolation. This hypothesis is strongly supported by our results. The best pure

algorithm (b = 120, |E| = 8, a = ists, g = static) achieves an MRE of 3.705, worse than

14

0 500 1000 1500 2000 2500 3000 3500
3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

Time (sec)

M
R

E

Pure SGS
Pure iSTS
Hybrid SGS
Hybrid iSTS

Figure 2: MRE performance over time for the two pure algorithms, the one-switch hybrid
algorithm, and the multi-switch hybrid algorithm. For the hybrid algorithms, |E| = 8. For
the multi-switch algorithm, g = double.

the MRE of all configurations listed in Table 2. The results shown in Figure 2 graphically

reinforce support for this hypothesis.

Our expectations that multi-switch would outperform single-switch is somewhat sup-

ported by the results. The ANOVA suggests that multi-switch (i.e., b = 120) is better

than one-switch (b = T), however, as Table 2 indicates, three of the top nine configura-

tions, included the overall best, are single-switch variations. A direct comparison of the

top two configurations using randomized paired-t test (Cohen, 1995) showed no statistically

significant differences at p ≤ 0.005.

Our overall results contrast with Beck (2007), in which the elite pool size was a statisti-

cally significant factor, and to Carchrae and Beck (2005), where the g parameter governing

the growth of the iteration time was statistically significant. However, these results are con-

sistent with Watson and Beck (2008). The different experimental designs and algorithms

used in these works lead to the following differences:

• Beck (2007) experiments only with SGS with an initial elite pool of random solutions.

The i-STS algorithm is not used and there is no switching among the algorithms.

15

• Watson and Beck (2008) use i-STS and a variation of the one-switch hybrid algorithm.

As such, this experiment is closest to the design and implementation of the current

experiments and, in comparison to Beck (2007), the sole difference in the experimental

designs is the mechanism used to initialize the elite solution set for SGS. It appears that

while different parameterizations of SGS influence the degree to which the algorithm

can improve upon random initial solutions (as shown in Beck (2007)), this sensitivity

disappears once solution quality is “sufficiently” good, e.g., as is the case for i-STS

solutions.

• Carchrae and Beck (2005) does not use i-STS nor SGS but rather experiment with

switching between a tabu search algorithm and a pure constraint-based tree search

algorithm. There is no elite pool and the only communication between algorithms is

the best-so-far solution which tabu search uses as a starting solution and tree search

uses only as an upper bound on solution cost. With richer communication (via the

elite pool) and stronger pure algorithms, it appears that the significance of the iteration

growth strategy disappears.

6. Experiment 2: The Impact of Solution Guidance

To evaluate the relative importance of SGS (as opposed to an alternative tree search strat-

egy), we replaced SGS in our hybrid algorithm with both chronological backtracking and ran-

domized restart. For completeness, we also experimented with running randomized restart

and chronological backtracking stand-alone as we did with SGS and i-STS in Experiment

1. Guided by the results of Experiment 1, we performed a fully crossed experiment given

the independent variables and associated values as shown in Table 3. We test a total of six

core algorithms: SGS, randomized restart (rr), and chronological backtracking (chron) both

alone and hybridized with i-STS as defined by the parameters a and c.

For both chronological backtracking and randomized restart, the upper bound on the

makespan is one less than the cost of the best solution found by i-STS and the randomized

texture-based heuristics and propagators described in Section 2.3 are employed. The value

ordering in both cases is determined by the min-slack heuristic (Smith and Cheng, 1993). For

chronological backtracking, there is no restarting of the search (i.e., the fail limit is infinite).

For randomized restart, we used a Luby fail limit sequence with a multiplier of 200, as was

used with SGS.

16

Parameter Value(s) Meaning

T 3600 Total run time for one instance, in seconds.
|E| 8 The size of the elite pool for both i-STS and SGS.
c {sgs, rr, chron} The constructive search algorithms.
a {c, hybrid} The pure-constructive or hybrid algorithms.
b {120, T} The base iteration time in seconds.
g double The iteration time growth sequence.

Table 3: The parameters for Experiment 2. See text for further details.

b c # SGS better # equal # SGS worse
3600 chron 38 2 0

rr 36 3 1
120 chron 37 3 0

rr 38 2 0

Table 4: A count of the number of problem instances for which the SGS version of the hybrid
algorithm found better, equal, or worse mean relative errors over 10 runs than the hybrid
algorithms using chronological backtracking and randomized restart.

A two-way ANOVA analysis of the results with p ≤ 0.001 shows that a and b and

their interaction are all statistically significant. Subsequent Tukey HSD tests (p ≤ 0.005)

show that (1) algorithms with T = 120 achieve significantly lower MRE than with T =

3600, (2) the hybrid algorithms are significantly better than the pure algorithms, and (3)

c=sgs is significantly better than c=chron. However, no statistically significant difference is

detected between c=sgs and c=rr or between c=rr and c=chron. In other words, our primary

hypothesis – that SGS is important for the performance observed in Experiment 1 – is not

supported by these statistical tests.

Looking at the results on individual problems, however, shows that with a single excep-

tion, the hybrid-sgs algorithm finds equal or better MRE values on each problem instance

when compared with the MREs found by chronological backtracking or randomized restart

algorithms. These counts are presented in Table 4. This result suggests that the lack of sig-

nificance in the Tukey HSD tests arises from the inter-problem instance variance. Therefore,

we performed four randomized paired-t tests (Cohen, 1995) to compare hybrid-sgs against

the hybrid versions of chronological backtracking and randomized restart for each value of b.

These tests show that the hybrid-sgs algorithm is significantly better than the corresponding

hybrid algorithms for both b values at p ≤ 0.001.

As a final indication of the contribution of SGS to hybrid algorithm performance, Table 5

17

b ca MRE Mean # Improving Solutions
sgs 3.384 6.02

3600 chron 3.844 0.04
rr 3.828 0.02
sgs 3.395 21.30

120 chron 3.792 0.04
rr 3.805 0.01

Table 5: The mean relative error and the mean number of improving solutions found by
hybrid algorithms using various tree search strategies in Experiment 2.

shows the mean relative error for each of the hybrid algorithms together with the number

of times that each constructive algorithm found an improving solution. This latter value is

the mean number of times in one run on one problem instance that the constructive search

component (i.e., sgs, rr, or chron) was able to find a solution that improved on the current

best solution in the elite pool. The table shows that SGS finds over two orders of magnitude

more improving solutions than the other algorithms. The substantial differences between

b = 3600 and b = 120 can be understood by recalling that in the b = 3600 condition, the

tree search is run once, with a very good starting elite pool (i.e., the pool found by running

i-STS for 1800 CPU seconds). In contrast, with b = 120, the tree search is run multiple

times starting with a comparatively worse elite pool (i.e., initially, that found after running

i-STS for only 60 seconds). Because the elite pool is of much higher quality in the former

condition, there is significantly less opportunity for find improving solutions.

Our hypothesis was that SGS would outperform the hybrid algorithms using chronological

backtracking and randomized restart. This hypothesis is strongly supported by our results,

specifically those that account for the variance between problem instances. The randomized

restart results are particularly interesting because the only difference relative to SGS is the

guidance by an elite solution. We conclude, therefore, that elite solution guidance is a critical

component of the hybrid’s performance.

7. Experiment 3: Learning Run-Time Allocations

Thus far, we have restricted i-STS and SGS to share an equal proportion of the run-time

b allocated to each iteration of the hybrid algorithm. However, it is possible or even likely

that one algorithm may perform better in certain iteration regimes, e.g., early or late in the

overall process. For example, Carchrae and Beck (2005) showed in the context of a switching-

18

based hybrid that reinforcement learning (Sutton and Barto, 1998) is able to achieve stronger

performance than the basic alternating hybrid approach by learning how to allocate variable

proportions of later iterations to the different algorithms. The approach was to allocate

iteration time based on an algorithm weight and to modify that weight based on the standard

reinforcement learning equation: wi+1(a) = (1−α)×wi(a)+α× pi(a). Here wi(a) indicates

the weight of algorithm a in iteration i and pi(a) is the normalized performance of algorithm

a in iteration i. The weights of all algorithms in a given iteration are normalized to sum

to 1 and the time in the iteration is directly proportional to the algorithm weights. As in

Carchrae and Beck (2005), initially our algorithms are equally weighted and the performance

in an iteration is calculated as the decrease in best-so-far makespan per second of run-time

normalized by the total decrease in best-so-far makespan per second over the iteration.

In the context of low-knowledge switching-based hybrid model, Carchrae

and Beck (2005) followed a random approach to select the order of the pure

algorithms. In this section, because there are only two pure algorithms, we use

two simple ordering approaches: run sgs after ists and run sgs before ists. The

algorithm ordering parameter is h.

In order to evaluate the effect of reinforcement learning, we conducted an experiment

that manipulates the learning rate α, the iteration time growth pattern g, and the

algorithm ordering approach h. For the other parameters, we use the settings for best

multi-switch algorithm from Experiment 1.3 Table 6 presents the independent variables of

our experiment. Note that the assignment of α = 0 and h = {ists → sgs} corresponds to

the non-learning algorithm as used in Experiment 1 where each pure algorithm is allocated

half of each iteration.

A three-way ANOVA analysis of the results indicates that the learning rate

α, the iteration time growth pattern g, nor the algorithm ordering approach h

has any statistically significant effect. The best (albeit not statistically significant)

MRE result, in fact, comes from the non-learning algorithm. Unexpectedly, this result fails

to support our hypothesis that we would see improved performance when reinforcement

learning was used to tailor the iteration time allocation. When we examine the evolution of

the weight values during a run, we see a consistent reduction of i-STS weight (and therefore

run-time) over time. This reduction is faster for larger α.

3The one-switch hybrid (b = 3600) can make no use of this learning as there is only one iteration.

19

Parameter Value(s) Meaning

T 3600 Total run time for one instance, in seconds.
|E| 8 The size of the elite pool for both i-STS and SGS.
a hybrid The algorithm.
b 120 The base iteration time in seconds, corresponding to multi-switch.
g {double, luby} The iteration time growth sequence.
α {0, 0.1, ..., 0.9} The learning rate.
h {ists → sgs, The execution order of algorithms within one iteration.

sgs → ists}

Table 6: The parameters for Experiment 3. See text for further details.

8. Experiment 4: Controlling Initial Solution Quality

To analyze why reinforcement learning of relative algorithm run-times in each iteration

fails to improve hybrid algorithm performance, and why SGS is favored over i-STS in the

reinforcement learning experiment, we next consider the ability of i-STS and SGS to improve

on an elite pool of a given initial quality. In Experiments 1 and 2, for each run on each

problem instance we recorded the contents of the elite pool whenever a new solution was

added. For each problem instance, we extract all unique solutions from all runs, across all

parameterizations, and sort the solutions from lowest to highest makespan. After ranking,

the solutions are divided into the following bins based on the makespan percentile: 0515,

2535, 4555, 6575, and 8595. The bin 2535, for example, contains all solutions with a

makespan between percentile 25 and 35; lower percentiles indicate high-quality solutions.

For reasons of simplicity and solution difficulty, we focus strictly on Taillard’s problem

instances ta41-ta51. For each instance, we independently and randomly sample 10 elite

pools of cardinality 8 from each makespan percentile bin. We then run 10 independent repli-

cations of the pure i-STS and SGS algorithms on each starting elite pool. Each replication is

executed for 100 seconds, as our experimental objective is to assess the ability of i-STS and

SGS to improve upon an initial elite pool of fixed quality. In summary, we execute 5000 runs

(10 instances times 5 bins times 10 elite pools times 10 runs) for each of the 2 algorithms.

We measure the average MRE for each bin and algorithm, computed every 10 seconds.

The results are shown in Figure 3, which reports the average MRE versus time for both

i-STS and SGS. First, we consider the results for the poorest initial quality, corresponding

to bin 8595. Here, while SGS outperforms i-STS in the first few seconds, i-STS dominates

subsequently. Similar, but less dramatic, behavior is exhibited for bin 6575. However,

20

for higher-quality initial elite pools, we observe that SGS dominates i-STS, such that no

performance cross-over point is observed. Overall, the results conclusively demonstrate that

i-STS is able to rapidly improve the quality of an initially poor elite pool. However, its

ability to continue to do so drops as elite pool quality improves, to the point where the

benefits are minimal. In contrast, SGS encounters difficulty – we hypothesize, due to the

underconstrained state – in improving poor-quality elite pools, but starts to dominate i-

STS once a medium to high-quality elite pool is obtained. These patterns suggest that a

fixed strategy emphasizing i-STS in early iterations and SGS in later iterations is the best

switching design, and provides an explanation for why the one-switch algorithm performed

well and for why reinforcement learning was both ultimately unable to learn a stronger

strategy and de-emphasized i-STS over time.

9. Comparison with the State-of-the-Art

As is common in work of this kind, we now compare our algorithm’s performance to that

of the state-of-the-art for solving JSPs. We select two baselines for comparison: Nowicki

and Smutnicki’s i-TSAB tabu search algorithm (Nowicki and Smutnicki, 2005) and Zhang et

al.’s hybrid tabu search / simulated annealing algorithm (Zhang et al., 2008). The i-TSAB

algorithm represents the state-of-the-art from 2003 onwards, while Zhang et al.’s algorithm

is a recently introduced competitor. A single “winner” is not easily determined, lacking

carefully controlled experiments and availability of the source code of these two algorithms.

However, it is clear from published performance analysis that these two algorithms are

superior to all predecessors.

Table 7 compares the best configuration from Experiment 1 (T = 3600, |E| = 8,

a = hybrid, g = static) against the two competing algorithms. Table 11 provides a detailed

breakdown of results for each problem instance. We compute the MRE for the best-known

solutions recorded in Taillard (2008) as of December, 2008 (“Best-Known”). Unfortunately,

Nowicki and Smutnicki (2005) only report results for a single run of i-TSAB, complicating

interpretation. Absent a rigorous alternative, we treat the corresponding results as rep-

resentative of mean i-TSAB performance. The Zhang et al. statistics are taken over 10

independent runs of their algorithm on each problem instance. Without the actual sample

populations, it is not possible to make statistical inferences regarding the relative perfor-

mance of the Zhang et al. algorithm and our hybrid algorithm. Consequently, we proceed

21

Instance Best i-TSAB Zhang Hybrid
Subset Known Best Mean Best Mean Worst
ta11-20 2.29 2.81 2.37 2.92 2.26 2.42 2.69
ta21-30 5.38 5.68 5.44 5.97 5.50 5.70 5.89
ta31-40 0.46 0.78 0.55 0.93 0.49 0.72 0.98
ta41-50 4.02 4.70 4.07 4.84 4.17 4.70 5.28

Overall 3.04 3.49 3.11 3.67 3.11 3.38 3.71

Table 7: Performance statistics comparing i-TSAB, Zhang et al.’s hybrid tabu search /
simulated annealing algorithm, and our hybrid on Taillard’s benchmark instances. The
“Best Known” column is based on the best-known upper bounds recorded by Taillard (2008).
The bold entries indicate the best performance comparing “Best” to “Best” and “Mean” to
“Mean”.

with a qualitative analysis.

First, we compare the performance of our hybrid with that of i-TSAB. Overall, and on

two of the four subsets (ta11-ta20 and ta31-ta40), the hybrid outperforms i-TSAB in terms

of MRE. On the other two subsets, the hybrid results are either the same (ta41-ta50) or

only slightly worse (ta21-ta30). While the percentage advantage is small in absolute terms,

we observe that due to the difficulty of these instances, apparently small differences have

historically differentiated state-of-the-art algorithms from second-tier competitors. Although

we cannot rigorously determine whether our hybrid performance dominates that of i-TSAB,

it is clear that the performance is, at a minimum, indistinguishable. Again, we are treating

the individual i-TSAB samples as representative of mean performance. If they are instead

treated as a measure of the best performance, they are clearly worse that the hybrid best

for all problem subsets.

Next, we compare the performance of our hybrid with that of Zhang et al.’s algorithm,

hereafter referred to simply as Zhang’s algorithm. In terms of MRE, the hybrid algorithm

dominates the Zhang algorithm both overall and on each problem subset; overall, the advan-

tage is 0.29%. In terms of mean best relative error, each algorithm dominates on two of the

four problem subsets, with equal overall performance. Of particular interest is the excellent

mean worst RE performance of our hybrid algorithm. On two of the subsets (ta11-ta20

and ta21-ta30), the mean worst RE of the hybrid is better than the mean performance of

the Zhang algorithm. Overall, the hybrid mean worst RE performance is only slightly worse

than the Zhang MRE performance, with a difference of only 0.04%. Clearly, a significant

advantage of our hybrid algorithm is the consistency of the state-of-the-art performance over

22

Instance Subset # New Best # Equal # Worse
ta11-20 2 7 1
ta21-30 2 5 3
ta31-40 1 7 2
ta41-50 1 1 8
Overall 6 20 14

Table 8: The number of instances in each subset for which the best solution found by the
best hybrid algorithm is better than, equal to, or worse than the previous best-known.

multiple runs, which is often elusive on very difficult benchmark problems.

A major issue in comparative assessment of state-of-the-art algorithms for the JSP in-

volves quantification of computational effort. In addition to issues involving the use of

disparate computing hardware, software engineering decisions and coding skill make such

comparisons notoriously problematic. We do not address these issues here. Rather, we ob-

serve that from analyses of published performance reports (Nowicki and Smutnicki, 2005;

Zhang et al., 2008), all three test algorithms were executed on modern computing hardware

and the allocated run-times on the larger problem instances were all within a factor of three.

9.1 Best-Known Upper Bounds

Table 8 records the number of problem instances in each subset for which the best solution

found by our best hybrid parameterization over its 10 runs is better than, equals, or is

worse than the best-known solutions. As can be observed, this single parameterization of

the hybrid algorithm is able to meet or improve upon the current best-known solutions in

26 of the 40 instances. This is an impressive result given that the best-known solutions are

aggregated from a wide variety of algorithms rather than being found by a single algorithm.

Under all parameterizations our hybrid yielded ten new best-known solutions to Taillard’s

benchmark instances as shown in Table 9. Although our main research goal is not to enter

“horse-race” competitions of the type that are particularly common in Operations Research

(Hooker, 1996), the ability of an algorithm to establish new best-known solutions in a given

domain is a common (albeit heuristic, because it fails to account for factors such as run-time,

coding ability, machine, and related factors) benchmark for establishing the state-of-the-art

in performance. At the very least, the ability of an algorithm to establish new best-known

solutions with reasonable computing effort provides strong evidence of general effectiveness.

23

Instance Prev. Best-Known New Best-Known

ta11 1359 1357

ta19 1335 1332

ta21 1644 1642

ta24 1646 1644

ta26 1645 1643

ta40 1674 1673

ta41 2018 2010

ta42 1949 1947

ta49 1967 1966

ta50 1926 1924

Table 9: The makespan of new best-known solutions identified by the hybrid i-STS / SGS
algorithms for Taillard’s benchmark problems over a variety of algorithm parameterizations.
They include the parameterizations where the run time, T , is set to 24 hours.

Hybrid Parameters ta14 ta31 ta35 ta36 ta38 ta39
|E| = 8, b = T , a = hybrid, g = static 10 10 1 7 5 10
|E| = 8, b = 120, a = hybrid, g = double 10 10 2 10 4 10

Table 10: The number of runs (out of 10) for which the two strongest-performing parame-
terizations of our hybrid algorithm found an optimal solution and proved its optimality.

9.2 On Proving Optimality

Unlike previous state-of-the-art algorithms for JSP, our hybrid is a complete algorithm given

a sufficiently large run-time limit T . It is therefore possible to both find an optimal solution

and prove its optimality directly rather than based on previously known lower bounds.

Table 10 displays the number of runs (out of 10) for which the two strongest-performing

parameterizations of our hybrid algorithm was able to prove optimality of the best solution

located. That is, in each case, an individual tree search in SGS exhausted the search space

without reaching its fail limit. We observe relatively consistent performance in proving

optimality across different runs of the same parameterization and instance.

10. Discussion

This paper has demonstrated that a comparatively simple combination of a sophisticated

tabu search algorithm and an advanced constraint programming constructive search is able

to achieve state-of-the-art performance on a set of standard benchmarks for the job-shop

24

scheduling makespan minimization problem. The reason for the comparatively simple hy-

bridization is, of course, the fact that both pure algorithms use an elite pool of high-quality

solutions to guide search. Therefore, it is easy to combine the algorithms by communicating

the elite pool.

The use of an elite pool is not novel, indeed, the two state-of-the-art JSP algorithms

from the literature discussed in Section 9 both use such a pool. However, there is little

understanding of why elite pools enable such strong performance. As noted in Section 1,

this work was motivated by informal ideas about differences in the search styles of the two

foundational algorithms, specifically concerning intensification versus diversification. While

our results are positive, it is important to note that this paper does not test these ideas.

The ideas need to be examined through careful formalization and experimental design. If

some sort of balance between intensification and diversification is posited, it is necessary

to unambiguously define the two notions as well as the balance between them. Further,

experiments that both measure and manipulate the intensification and diversification and

demonstrate correlation and causation need to be performed. It is possible that there are

other underlying explanations of our results, unrelated to these motivations. More rigorous

testing of these ideas will be the focus on follow-on research.

11. Conclusions

Historically, the performance of constraint programming approaches – despite the availability

of strong, domain-specific propagation and heuristic search techniques – has lagged that of

local search algorithms on the classical job-shop scheduling problem. We introduced a family

of simple hybrid algorithms that leverage the broad search capabilities of a high-performance

tabu search algorithm for the JSP (i-STS) with the domain-specific inference capabilities of

the state-of-the-art constraint programming algorithm for the JSP (SGS). The performance

of the hybrid algorithm is at least competitive with the two state-of-the-art algorithms

for the JSP: Nowicki and Smutnicki’s i-TSAB tabu search algorithm and Zhang et al.’s

hybrid tabu search / simulated annealing algorithm. While various factors outside our

immediate control prevent us from making a more rigorous and precise statement regarding

relative performance, we additionally observe that our hybrid algorithm was able to locate ten

new best-known solutions to Taillard’s notoriously difficult benchmark instances, providing

additional evidence of the effectiveness of our approach. Further, our hybrid algorithm is

25

able to consistently achieve excellent performance, e.g., the worst-case performance is roughly

equivalent to the mean performance of the Zhang et al. algorithm.

While this paper focuses on the introduction and analysis of a hybrid algorithm in terms of

performance, our original motivation was to better understand why constraint programming

algorithms for the JSP – in particular, SGS – generally under-perform their local search

counterparts. Although it is now clear that SGS has a niche relative to local search in

state-of-the-art algorithms for the JSP, we have only begun preliminary investigations into

understanding this niche and how SGS exploits it. For example, we have preliminary evidence

that SGS acts primarily as an intensification mechanism for the elite solutions generated by

i-STS, and is empirically more efficient than tabu search in that role. Overall, the present

contribution establishes the hybrid i-STS / SGS algorithm as an interesting test subject;

future research will analyze these and other questions raised by this performance analysis.

Acknowledgments

This research was supported in part by the Natural Sciences and Engineering Research

Council of Canada, the Canadian Foundation for Innovation, the Ontario Research Fund,

Microway, Inc., and ILOG, S.A.. Sandia is a multipurpose laboratory operated by Sandia

Corporation, a Lockheed-Martin Company, for the United States Department of Energy

under contract DE-AC04-94AL85000.

References

Balas, E., A. Vazacopoulos. 1998. Guided local search with shifting bottleneck for job-shop

scheduling. Management Science 44 262–275.

Baptiste, P., C. Le Pape, W. Nuijten. 2001. Constraint-based Scheduling . Kluwer Academic

Publishers.

Beck, J. C. 2007. Solution-guided multi-point constructive search for job shop scheduling.

Journal of Artificial Intelligence Research 29 49–77.

Beck, J. C., M. S. Fox. 2000. Dynamic problem structure analysis as a basis for constraint-

directed scheduling heuristics. Artificial Intelligence 117 31–81.

26

Blażewicz, J., W. Domschke, E. Pesch. 1996. The job shop scheduling problem: Conventional

and new solution techniques. European Journal of Operational Research 93 1–33.

Boyan, J., A. Moore. 2000. Learning evaluation functions to improve optimization by local

search. Journal of Machine Learning Research 1 77–122.

Carchrae, T., J. C. Beck. 2005. Applying machine learning to low knowledge control of

optimization algorithms. Computational Intelligence 21 372–387.

Cohen, P. R. 1995. Empirical Methods for Artificial Intelligence. The MIT Press, Cambridge,

Mass.

Garey, M.R., D.S. Johnson, R. Sethi. 1976. The complexity of flowshop and jobshop schedul-

ing. Mathematics of Operations Research 1(2) 117–129.

Glover, F., M. Laguna, R. Mart́ı. 2003. Scatter search and path relinking: Advances and

applications. F. Glover, G.A. Kochenberger, eds., Handbook of Metaheuristics. Kluwer

Academic Publishers, 1–35.

Gomes, C. P., C. Fernández, B. Selman, C. Bessière. 2005. Statistical regimes across con-

strainedness regions. Constraints 10 317–337.

Hooker, J. N. 1996. Testing heuristics: We have it all wrong. Journal of Heuristics 1 33–42.

Horvitz, E., Y. Ruan, C. Gomes, H. Kautz, B. Selman, M. Chickering. 2001. A Bayesian

approach to tackling hard computational problems. Proceedings of the Seventeenth Con-

ference on Uncertainty and Artificial Intelligence (UAI-2001). 235–244.

Laborie, P. 2003. Algorithms for propagating resource constraints in AI planning and schedul-

ing: Existing approaches and new results. Artificial Intelligence 143 151–188.

Lagoudakis, M. G., M. L. Littman. 2000. Algorithm selection using re-

inforcement learning. Proceedings of the 17th International Conference on

Machine Learning . Morgan Kaufmann, San Francisco, CA, 511–518. URL

citeseer.nj.nec.com/lagoudakis00algorithm.html.

Le Pape, C. 1994. Implementation of resource constraints in ILOG Schedule: A library for

the development of constraint-based scheduling systems. Intelligent Systems Engineering

3 55–66.

27

Leyton-Brown, K., E. Nudelman, Y. Shoham. 2002. Learning the empirical hardness of

optimization problems: The case of combinatorial auctions. Proceedings of the Eighth

International Conference on Principles and Practice of Constraint Programming (CP02).

556–572.

Luby, M., A. Sinclair, D. Zuckerman. 1993. Optimal speedup of Las Vegas algorithms.

Information Processing Letters 47 173–180.

Minton, S. 1996. Automatically configuring constraint satisfaction programs: A case study.

Constraints 1 7–43.

Nowicki, E., C. Smutnicki. 1996. A fast taboo search algorithm for the job shop problem.

Management Science 42 797–813.

Nowicki, E., C. Smutnicki. 2005. An advanced tabu search algorithms for the job shop

problem. Journal of Scheduling 8 145–159.

Nuijten, W. P. M. 1994. Time and resource constrained scheduling: a constraint satisfaction

approach. Ph.D. thesis, Department of Mathematics and Computing Science, Eindhoven

University of Technology.

R Development Core Team. 2006. R: A Language and Environment for Statisti-

cal Computing . R Foundation for Statistical Computing, Vienna, Austria. URL

http://www.R-project.org. ISBN 3-900051-07-0.

Rice, J.R. 1976. The algorithm selection problem. Advances in Computers 15 65–118.

Scheduler. 2007. ILOG Scheduler 6.5 User’s Manual and Reference Manual . ILOG, S.A.

Smith, S. F., C. C. Cheng. 1993. Slack-based heuristics for constraint satisfaction scheduling.

Proceedings of the Eleventh National Conference on Artificial Intelligence (AAAI-93). 139–

144.

Sutton, R.S., A.G. Barto. 1998. Reinforcement Learning: An Introduction. MIT Press.

Taillard, E. D. 1993. Benchmarks for basic scheduling problems. European Journal of

Operational Research 64 278–285.

28

Taillard, É.D. 1989. Parallel taboo search technique for the jobshop scheduling problem.

Tech. Rep. ORWP 89/11, DMA, Ecole Polytechnique Fédérale de Lausanne, Lausanne,

Switzerland.

Taillard, É.D. 2008. http://ina.eivd.ch/collaborateurs/etd/default.htm. December.

Watson, J.-P. 2003. Empirical modeling and analysis of local search algorithms for the job-

shop scheduling problem. Ph.D. thesis, Department of Computer Science, Colorado State

University.

Watson, J.-P. 2005. On metaheuristic “Failure Modes”: A case study in tabu search for

job-shop scheduling. Proceedings of the Fifth Metaheuristics International Conference.

Watson, J.-P., J.C. Beck. 2008. A hybrid constraint programming / local search approach

to the job shop scheduling problem. L. Perron, M. Trick, eds., Proceedings of the Fifth

International Conference on the Integration of AI and OR Techniques in Constraint Pro-

gramming for Combinatorial Optimization Problems (CPAIOR’08). 263–277.

Watson, J.-P., A.E. Howe, L.D. Whitley. 2006. Deconstructing Nowicki and Smutnicki’s

i-TSAB tabu search algorithm for the job-shop scheduling problem. Computers and Op-

erations Research, Anniversary Focused Issue on Tabu Search 33 2623–2644.

Wu, H., P. van Beek. 2007. On universal restart strategies for backtracking search. Proceed-

ings of the Thirteenth International Conference on Principles and Practice of Constraint

Programming . 681–695.

Zhang, C.Y., P. Li, Y. Rao, Z. Guan. 2008. A very fast TS/SA algorithm for the job shop

scheduling problem. Computers and Operations Research 35 282–294.

29

0 10 20 30 40 50 60 70 80 90 100
4

5

6

7

8

9

10

11

12

Time (sec)

M
R

E

MRE vs. Time for Different Algorithms and Starting Qualities

SGS Q=0515
SGS Q=2535
SGS Q=4555
SGS Q=6575
SGS Q=8595
iSTS Q=0515
iSTS Q=2535
iSTS Q=4555
iSTS Q=6575
iSTS Q=8595

F
igu

re
3:

T
h
e

relative
p
erform

an
ce

of
i-S

T
S

an
d

S
G

S
given

startin
g

elite
sets

of
d
iff

eren
t

q
u
ality.

30

Best Hybrid Second Best Hybrid
Instance LB UB Best Mean Best Mean
ta11 1323 1359 1357 1362.1 1357 1362.7
ta12 1351 1367 1367 1369.5 1367 1369.4
ta13 1282 1342 1342 1343.3 1342 1345.5
ta14 1345 1345 1345* 1345.0 1345* 1345.0
ta15 1304 1339 1339 1339.0 1339 1339.0
ta16 1302 1360 1360 1360.0 1360 1360.5
ta17 1462 1462 1462 1463.8 1462 1463.8
ta18 1369 1396 1397 1401.0 1396 1401.1
ta19 1297 1335 1332 1333.6 1332 1333.4
ta20 1318 1348 1348 1353.0 1348 1353.8
ta21 1539 1644 1642 1644.4 1642 1645.5
ta22 1511 1600 1610 1613.1 1600 1610.6
ta23 1472 1557 1557 1559.2 1557 1558.9
ta24 1602 1646 1645 1647.6 1645 1646.6
ta25 1504 1595 1595 1601.4 1595 1601.1
ta26 1539 1645 1647 1648.8 1647 1650.2
ta27 1616 1680 1680 1684.1 1680 1685.5
ta28 1591 1603 1613 1615.7 1603 1614.3
ta29 1514 1625 1625 1626.3 1625 1626.4
ta30 1473 1584 1584 1588.7 1584 1589.7
ta31 1764 1764 1764* 1764.0 1764* 1764.0
ta32 1774 1795 1796 1809.1 1798 1806.5
ta33 1778 1791 1791 1796.3 1791 1798.5
ta34 1828 1829 1829 1831.0 1829 1831.0
ta35 2007 2007 2007* 2007.0 2007 2007.0
ta36 1819 1819 1819* 1820.7 1819* 1819.0
ta37 1771 1771 1777 1784.5 1774 1781.2
ta38 1673 1673 1673* 1675.1 1673* 1676.1
ta39 1795 1795 1795* 1795.0 1795* 1795.0
ta40 1631 1674 1673 1680.1 1674 1682.0
ta41 1859 2018 2012 2023.9 2018 2025.9
ta42 1867 1949 1956 1963.0 1957 1962.4
ta43 1809 1858 1863 1880.3 1863 1878.1
ta44 1927 1983 1991 1998.0 1992 1995.5
ta45 1997 2000 2000 2004.6 2000 2005.6
ta46 1940 2015 2016 2028.9 2023 2030.9
ta47 1789 1903 1906 1916.6 1910 1917.2
ta48 1912 1949 1951 1965.3 1956 1963.6
ta49 1915 1967 1969 1975.4 1971 1978.7
ta50 1807 1926 1932 1939.2 1934 1942.8

Table 11: The best and mean makespan found by the best and second best hybrid algorithms.
Bold entries indicates new best makespans. ’*’ indicate that the optimal solution was found
and proved without the use of the best-known lower bound.

31

